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Abstract: The proliferation of Internet of Things (IoT) devices and the imminent threat of quantum 

computing have created an urgent need for advanced cryptographic methods that ensure both 

security and efficiency. This literature review synthesizes recent research in three critical areas: 

secure data transmission techniques for resource-constrained environments, the evolution of post-

quantum cryptography (PQC) with a focus on the McEliece cryptosystem, and the emerging role 

of machine learning (ML) in enhancing cryptographic systems and quantum communications. We 

examine methods ranging from pseudo-random number generation and lightweight encryption to 

the development of PQC schemes like QC-MDPC McEliece that balance security with practicality. 

Furthermore, we explore the application of ML for optimizing PQC, mitigating noise in quantum 

key distribution (QKD), and the associated security vulnerabilities in quantum machine learning 

(QML). The review identifies key research challenges, including the security of structured 

cryptosystems, practical deployment on embedded devices, and adversarial threats in QML. 

Finally, we outline future research directions, emphasizing the need for robust, efficient, and 

intelligent security protocols for the post-quantum era. 

Keywords: Post-Quantum Cryptography (PQC), McEliece Cryptosystem, Secure Data 

Transmission, Internet of Things (IoT) Security, Machine Learning, Quantum Machine Learning 

(QML), Quantum Key Distribution (QKD), Circulant Matrices. 

1. Introduction 

In an increasingly interconnected world, the security of data transmission is paramount. From 

sensitive medical data transmitted by IoT sensors to financial transactions on blockchain systems, 
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the need for robust and efficient cryptographic methods has never been greater. However, two 

significant trends are challenging the foundations of classical cryptography. First, the explosion of 

the Internet of Things (IoT) has led to a massive deployment of devices with limited computational 

power and memory, demanding lightweight security solutions [3, 7]. Second, the rapid 

advancement of quantum computing poses an existential threat to widely used public-key 

cryptosystems like RSA and ECC [5, 28]. 

This reality has catalyzed a global research effort to develop Post-Quantum Cryptography (PQC), 

a new generation of algorithms resistant to attacks from both classical and quantum computers. 

Among the leading candidates, code-based cryptosystems like McEliece have garnered significant 

attention for their strong security foundations [12, 18, 22]. Simultaneously, the field of Artificial 

Intelligence (AI), particularly Machine Learning (ML), is emerging as a powerful tool to optimize, 

enhance, and in some cases, challenge these new cryptographic paradigms [25, 28, 29]. 

This literature review provides a comprehensive overview of the current research landscape at the 

intersection of these domains. It synthesizes findings from recent studies on secure data 

transmission protocols, the intricacies of the McEliece cryptosystem and its variants, and the dual 

role of machine learning as both an enabler for enhanced security and a potential vector for novel 

attacks. The paper is structured to first cover the foundational techniques for secure 

communication, then delve into the specifics of PQC, and finally explore the transformative impact 

of machine learning. By analyzing the current state-of-the-art, we identify critical research 

challenges and propose promising directions for future work, aiming to chart a course toward a 

secure and resilient digital future. 

2. Foundations of Secure Data Transmission 

Secure communication relies on a layered set of technologies and protocols designed to ensure 

confidentiality, integrity, and authenticity. Research in this area focuses on creating methods that 

are not only secure but also efficient enough for diverse applications, from blockchain to the 

Industrial IoT (IIoT). 

A fundamental building block for any cryptographic system is the generation of unpredictable data, 

often in the form of pseudo-random sequences. As highlighted by [1], chaotic systems like coupled 

map lattices provide a mechanism to generate such sequences, with the crucial feature that their 

behavior can be controlled by a secret key. This principle of using a shared secret to seed a pseudo-

random process is a recurring theme. It forms the basis for generating session keys in 

authentication schemes for medical IoT data [6] and for creating random nonces to prevent replay 

attacks in lightweight IIoT protocols [7]. SERPPA, an algorithm for Wireless Sensor Networks 

(WSNs), also leverages random permutations to bolster encryption security [3]. 
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Figure 1: Secure Data Transmission 

Once a secure channel is established, data must be encrypted. For sensitive applications like 

blockchain, advanced techniques such as homomorphic encryption allow computations to be 

performed on encrypted data, preserving privacy throughout the process [2]. For general-purpose 

encryption in resource-constrained environments, the focus is on efficiency. Elliptic Curve 

Cryptography (ECC) is noted for providing high security with smaller key sizes than RSA, making 

it ideal for the smart grid [5]. Symmetric algorithms like AES are often used for the actual data 

transmission once a session key is established through a key agreement protocol [7]. 

To achieve multi-layered security, researchers are combining cryptography with other techniques. 

A comprehensive model for cloud computing security proposes a workflow that includes AES and 

RSA encryption, data hiding through steganography, and secure data sharing mechanisms [4]. 

Another approach combines Shamir's secret sharing with steganography, where a secret is split 

into shares that are hidden in cover images for transmission, relying on a shared understanding of 

the parameters as a form of secret [10]. 
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Figure 2: A layered model for secure data transmission, integrating concepts from the reviewed 

literature, from foundational secret keys to application-level data protection. 

3. Post-Quantum Cryptography: The McEliece Cryptosystem 

The McEliece cryptosystem, first proposed in 1978, is a code-based public-key system that has 

remained secure against attacks for over four decades, including those anticipated from future 

quantum computers. Its primary drawback has historically been its large public key size. 

Consequently, a significant body of research has focused on creating variants that reduce key size 

while maintaining security. 

One major line of research involves using codes with algebraic structures. Circulant and quasi-

cyclic (QC) matrices allow for a very compact representation of the key, making them attractive 

for embedded systems [11, 12, 15]. Variants using Quasi-Dyadic (QD) Goppa codes have been 

shown to reduce key sizes by as much as 90% compared to classical McEliece, with 

implementations on ARM Cortex-M4 processors demonstrating their feasibility for IoT 

applications [13]. Similarly, the use of Moderate Density Parity-Check (MDPC) codes, particularly 

Quasi-Cyclic MDPC (QC-MDPC) codes, has led to schemes with public key sizes of just a few 

thousand bits for a 128-bit security level [18]. Implementations of QC-MDPC McEliece have been 

successfully demonstrated on highly constrained devices with as little as 4-8 KB of RAM [22, 24]. 

However, the structure introduced to reduce key size can also create vulnerabilities. Several studies 

analyze the security of these structured variants. Research shows that naive circulant constructions 

can be broken by polynomial-time attacks that exploit the algebraic structure, such as folding 

attacks [14, 17]. Similarly, certain parameter choices for QC-LDPC codes can allow an attacker to 

recover the secret key far more efficiently than a generic decoding attack [19]. The security of 

these systems often relies on a delicate trade-off. To mitigate these risks, researchers propose 

countermeasures like using large circulant block sizes and applying scrambling techniques to 

obscure the underlying structure [11, 14]. 

Another class of attacks, known as distinguishing attacks, does not aim to recover the key but to 

distinguish the public key's code from a truly random code. A successful distinguisher can 

undermine the fundamental security assumption of the cryptosystem. Such attacks have been 

proposed for high-rate McEliece variants using Goppa codes [20] and for schemes based on Reed-

Solomon codes, which can be identified by finding low-weight codewords in their dual [21]. This 

research underscores the critical importance of careful code and parameter selection to ensure the 

long-term security of McEliece-based cryptosystems. 

4. The Role of Machine Learning in Secure and Quantum Systems 

Machine learning is emerging as a transformative technology in the field of secure 

communications, offering powerful tools for optimization, signal processing, and analysis. 

However, it also introduces new surfaces for attack, particularly in the quantum domain. 
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4.1. ML for Enhancing Quantum Communication 

In Continuous-Variable Quantum Key Distribution (CV-QKD), environmental factors like phase 

drift in the local oscillator can severely limit performance. Machine learning provides a novel 

solution to this problem. Researchers have successfully used Convolutional Neural Networks 

(CNNs) to estimate and compensate for phase noise, reducing error variance by over 50% without 

needing traditional pilot signals [25]. Other supervised ML models have achieved similar results, 

reducing phase noise variance by over 60% in real-time [26]. Going further, Recurrent Quantum 

Neural Networks (RQNNs) have been used to restore coherent quantum states affected by channel 

noise, reducing the Quantum Bit Error Rate (QBER) by approximately 30% and extending the 

secure transmission distance [27]. 

4.2. ML for Optimizing Post-Quantum Cryptography 

The computational intensity of some PQC algorithms can be a barrier to their deployment. Deep 

learning (DL) frameworks have been proposed to optimize the performance of lattice-based and 

code-based cryptosystems. By using neural networks to automate parameter tuning and accelerate 

core operations, researchers have demonstrated a greater than 30% speed-up in key generation and 

a 20% improvement in signature verification, making PQC more practical for IoT and edge devices 

[28]. 

4.3. Security of Quantum Machine Learning (QML) 

While ML can enhance security, ML models themselves can be attacked. This is especially true 

for Quantum Machine Learning (QML). Adversarial attacks, which involve making small, 

calculated perturbations to input data, can deceive QML classifiers with alarming success. Studies 

show that by manipulating input qubit states, an attacker can induce misclassification rates of over 

80-90% [29, 30]. This highlights a critical security gap that must be addressed before QML can be 

safely deployed. 

4.4. Advanced ML and Quantum Architectures 

The intersection of ML and quantum computing is giving rise to entirely new paradigms. Graph 

Neural Networks (GNNs) are being used to solve complex combinatorial optimization problems 

that are central to both cryptography and logistics [31]. To address privacy in distributed quantum 

computing, the framework of Federated Quantum Machine Learning (FQML) has been proposed, 

allowing quantum models to be trained across multiple devices without sharing the underlying 

private data [32]. Finally, new architectures like Deep Quantum Neural Networks (DQNNs) are 

being developed with custom backpropagation algorithms to avoid issues like vanishing gradients, 

potentially unlocking new capabilities in quantum AI [33]. 



 
1548                                                        JNAO Vol. 14, Issue. 1 : 2023 

 

 

Figure 3: The intersection of PQC, ML, and Quantum Technologies, highlighting ML's dual role 

in optimizing systems and introducing new threats. 

5. Research Challenges 

The reviewed literature reveals several significant challenges that require further investigation: 

1. Security of Structured PQC: While structured codes (circulant, QC, QD) are essential 

for making PQC practical on embedded devices, their algebraic properties can be exploited. 

The primary challenge is to develop a more profound theoretical understanding of these 

vulnerabilities and design new code families or scrambling techniques that are provably 

secure against structural attacks while retaining efficiency [14, 19]. 

2. Practical Deployment and Side-Channels: Implementing PQC on highly constrained 

devices (<16 KB RAM) is a major engineering hurdle. Beyond raw performance, a critical 

challenge is ensuring these implementations are resistant to side-channel attacks (e.g., 

timing attacks, power analysis), which can leak secret key information. Developing 

constant-time algorithms and effective masking techniques for a wide range of PQC 

schemes is an ongoing effort [13, 24]. 

3. Adversarial Robustness in QML: The demonstrated vulnerability of QML models to 

adversarial examples is a serious threat [29, 30]. The key challenge is to move beyond 

simply identifying these attacks and to develop practical, provable defenses. This includes 

creating noise-robust training regimens, quantum error mitigation strategies tailored to 

adversarial threats, and theoretical frameworks for certifying the robustness of a QML 

model. 

4. Scalability and Privacy in Federated Quantum Learning: FQML is a promising 

concept, but it faces significant practical challenges. These include the high overhead of 

quantum communication, the difficulty of aggregating gradients from parameterized 

quantum circuits without violating privacy, and protecting against quantum-capable 

adversaries. Developing efficient and secure protocols for FQML is a critical step toward 

distributed quantum computation [32]. 

6. Future Scope 
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Building on the identified challenges, future research in this area should focus on the following 

directions: 

1. Automated Security Analysis for PQC: Future work could leverage ML and automated 

theorem provers to search for vulnerabilities in structured PQC schemes. A GNN-based 

approach, for instance, could be trained to recognize potentially weak algebraic structures 

in public keys, automating a process that is currently manual and highly specialized. 

2. Hardware-Software Co-design for PQC: To overcome the deployment challenges on IoT 

devices, a co-design approach is needed. This involves designing custom hardware 

accelerators for specific PQC operations (e.g., polynomial multiplication) and developing 

software that can efficiently leverage this hardware. This would lead to PQC-enabled 

microcontrollers that are both fast and energy-efficient. 

3. Standardization of Adversarial QML Defenses: As QML matures, the community will 

need standardized benchmarks and protocols for evaluating adversarial robustness. Future 

research should focus on creating a "CIFAR-10 for QML," a common dataset and set of 

attack vectors against which all new defense mechanisms can be tested and compared. 

4. Hybrid Quantum-Classical Cryptography: Rather than a complete switch-over, the near 

future will likely involve hybrid cryptographic schemes that combine the strengths of 

classical and post-quantum algorithms. Research is needed to design and analyze protocols 

that use both, ensuring a graceful and secure transition to the PQC era. 

7. Conclusion 

This literature review has charted a course through the dynamic and converging fields of secure 

data transmission, post-quantum cryptography, and machine learning. The journey from 

foundational pseudo-random number generation to the complexities of QC-MDPC McEliece and 

adversarial QML reveals a clear trajectory: the demand for security is intensifying, and the tools 

we use to provide it are becoming more sophisticated. The research overwhelmingly shows that 

the future of cryptography will not be monolithic. It will be a hybrid, leveraging structured codes 

for efficiency on IoT devices, advanced ML for optimizing performance and mitigating noise in 

quantum channels, and novel architectures like FQML to enable secure, distributed intelligence. 

The challenges of structural vulnerabilities in PQC and adversarial threats in QML are not minor 

hurdles; they are fundamental questions about the nature of security in a world of quantum 

machines and advanced AI. However, the innovative solutions presented in the literature—from 

ML-based phase compensators to lightweight PQC implementations—inspire confidence. The 

path forward requires a multi-disciplinary approach, combining the formal rigor of cryptography, 

the practical ingenuity of embedded systems engineering, and the adaptive power of machine 

learning. By addressing the research challenges and pursuing the future directions outlined here, 

the scientific community can build the secure communication infrastructure required for the post-

quantum era. 
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